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Abstract

Heritage science is a broad and interdisciplinary scientific field that focuses on the characteriza-
tion of materials, techniques, deterioration processes, and the preservation of cultural assets.
This field encompasses a wide array of subjects and places particular emphasis on the investi-
gation of complex and heterogeneous materials—such as textiles, paintings, architectural struc-
tures, as well as human and fossil remains—all of which contribute collectively to the recon-
struction of the past and the deepening of our historical understanding through time. Over time,
all materials are influenced by environmental factors, and their interactions with surrounding
conditions can lead to alterations driven by chemical, physical, and biological processes. Among
these materials, organic components —particulatly proteinaceous compounds — play a pivotal
role. In prehistoric archaeology and geological contexts, proteins provide valuable insights into
ancient diets, health status, and even evolutionary adaptations. In the context of artworks, the
analysis of proteins can reveal important information regarding production techniques, fabrica-
tion processes, and restoration strategies. Furthermore, protein studies offer clues that help im-
prove our understanding of past cultural practices. Due to their low abundance, interaction with
mineral matrices, and continuous degradation, the development of analytical methods that both
aid in sample preservation and enhance our understanding of degradation mechanisms is essen-
tial. Such research forms the foundation of advancements in cultural heritage conservation sci-
ence and is crucial for ensuring the longevity and structural integrity of historical objects. The
aim of this study is to provide a concise overview of the importance of investigating historical
proteinaceous materials and to explore recent approaches in their recovery, identification, and
analysis. This work seeks to highlight the role of proteins as valuable informational resources in

the fields of archaeology, art conservation, and biogeo-heritage.
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Introduction

Over the past few decades, the study of ancient biomolecules

has revolutionized our understanding of the evolutionary history

L)

Check for
updates

Received: 2025/4/8
Revised: 2025/6/16
Accepted: 2025/6/25
Published: 2025/6/30

Copyright: ©2025 by the Authors. This
article is an open access article distributed
under the terms and conditions of the Cre-
ative Commons Atttibution Noncommet-
cial 4.0 International (CC BY-NC 4.0 li-

cense)

https://creativecommons.org/li-

censes/by-nc/4.0

of ancient molecules that have arguably made the biggest contri-
bution to elucidating evolutionary history to date are nucleic acids,

proteins, and lipids (Cappellini et al., 2018).

of life on Earth. Previously, evolutionary insights were largely
based on molecular analyses of living organisms and the observa-
tion of phenotypic traits in fossil records, which offered only in-
direct evidence of the forces and mechanisms behind present-day
biodiversity. In contrast, ancient biomolecules provide a direct
glimpse into the biological past, enabling researchers to trace evo-

lutionary processes as they occurred in real time. The categories

Proteins are long-lived biomolecules capable of surviving
over millions of years Proteins are remarkably durable biomole-
cules, capable of withstanding the passage of millions of years
(Warinner et al., 2022). Proteins, as bioarchives, can be extracted
from a wide variety of art, archaeological, and paleontological ma-
terials, highlighting the versatility of proteomic analysis. These

sources of recovery including painting binders (Haghighi et al.,
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2024, Gatti et al., 2021), textiles (Cucina et al, 2024), bone
(Figueiredo etal., 2012, Collins et al., 2002, Buckley & Wadsworth,
2014, Biancolillo et al., 2019, Prieto-Bonete etal., 2019, Bertoglio
etal., 2021, Loy et al., 2023, Diaz-Cortés et al., 2024),  teeth (Acil
et al., 2005, Gibson, 2011, Adler et al,, 2011, Cappellini et al.,
2019, Gil-Bona & Bidlack, 2020, Rancourt et al., 2023), eggshell
(Demarchi et al., 2022) and marine shell (Demarchi et al., 2011,
Baldreki et al., 2024), in the fossil records, parchment (Fiddyment
et al., 2019), and ceramics (Hendy et al. 2018a, Chowdhury et al.,
2021). The ability to retrieve and study protein sequences from
such diverse materials underscores the broad applicability of pro-
teomics across different fields, providing invaluable insights into
both biological and cultural history.

Ancient proteins are inherently complex mixtures, and the
term paleoproteomics is used to describe the study of these pro-
teomes from the past (Warinner et al., 2022). Indeed, ancient pro-
tein analysis, can be defined as the identification and study of pro-
teins from archeological, historical, and paleontological remains
and materials (Hendy, 2012).

Significance of the Study

While deoxyribonucleic acids (DNA) can dissect evolution-
ary processes with the highest resolution, proteins and lipids are
important on longer temporal scales and in geographic areas that
are less favorable to DNA preservation. For the first time, in 1984,
aDNA from a museum specimen of quagga, an equid species that
went extinct in the nineteenth century, was successfully sequenced
(Cappellini et al., 2018). Over the past decade, ancient protein se-
quences have gained recognition as a valuable resource for recon-
structing phylogenetic relationships across deep time (Paterson et
al., 2024). These sequences provide critical insights into the evo-
lutionary history of species, offering a complementary approach
to ancient DNA for understanding lineage divergence and ances-
tral connections that extend far beyond the reach of traditional
genetic studies (Haynes et al., 2002, Baker et al., 2024). They fre-
quently outlast even the most ancient surviving DNA, though
their true lifespan remains uncertain. While proteins do not persist
in the geological record as long as lipids, their vast sequence di-
versity provides greater insight into biological history. This diver-
sity makes proteins one of the most valuable bio archives for stud-
ying the ancient past, offering a wealth of information about long-
extinct organisms and the environments they once inhabited.
Their role as a historical record is unparalleled, given their resili-
ence and informational richness (Hendy et al., 2018b, Warinner et
al., 2022). The extraction of genomic data from specimens that are
thousands of years old has greatly enhanced our understanding of
prehistoric population dynamics, ancient hybridization events,
and the demographic patterns of extinct species (Van der Valk et
al.,, 2021).

Stable isotope analysis involves measuring the ratios of non-
radioactive isotopes - most commonly catbon (8'*C/8'2C), nitro-
gen (815N/ 814N), oxygen (8180/ 81°0), and sulfur (§**S/ & 328)—

within biological molecules to infer past environmental condi-
tions, diets, and physiological processes. In the context of ancient
protein analysis, stable isotope ratios embedded within preserved
proteins such as collagen provide critical insights into the trophic
level, dietary habits, and migration patterns of ancient organisms.
Unlike bulk isotope analysis of whole tissues, compound-specific
isotope analysis (CSIA) targets individual amino acids derived
from proteins, offering a more refined resolution of dietary
sources and metabolic pathways (Liidecke et al., 2018, Liidecke et
al., 2022, Leichliter et al., 2023).

The integration of stable isotope data with proteomic results
enhances our understanding of archaeological samples by linking
molecular identity (species or tissue type identified via proteins)
with ecological and environmental information provided by iso-
topes. For example, analyzing carbon and nitrogen isotope ratios
in collagen peptides can reveal whether an ancient animal con-
sumed primarily terrestrial plants or marine resources, or if a hu-
man population had a diet rich in protein from specific ecological
niches. Additionally, oxygen and sulfur isotopes can track water
sources and geographic origins, complementing taxonomic iden-
tification from protein sequences. This multidisciplinary approach
significantly strengthens reconstructions of ancient lifeways, sub-
sistence strategies, and biogeographical patterns, making stable
isotope analysis an invaluable adjunct to palacoproteomics (Eriks-
son et al., 2008, Tutken et al., 2013, Linderholm et al., 2014, Lugli
et al,, 2019).

Ancient protein

Protein degradation is primarily driven by bacteria through
enzymatic digestion, a process that occurs relatively rapidly. Only
a small fraction of the total proteins is expected to survive in the
archaeological record, indeed, those that tend to be mineralized,
highly abundant, or possess unusual properties. Due to the diverse
characteristics of proteins—including differences in composition,
chemical properties, size, shape, function, and whether they are
incorporated into mineralized tissues—the taphonomic factors
that influence post-mortem protein degradation and decay are
highly variable. Type I collagen (COL1) is the most enduring pro-
tein in bone, comprising over 80% of the bone proteome and
making up roughly 20-30% of the total mass of fresh bone. Its
remarkable durability stems from its heavy mineralization and its
unique structure—a highly stable triple helix (Warinner et al.,
2022). Proteins undergo a stepwise decomposition process, break-
ing down first into peptides, then into free amino acids, and even-
tually into smaller molecules such as aliphatic acids and hydrocar-
bons. This sequence reflects the progtressive cleavage of the pro-
tein's structure, where peptides fragment into individual amino ac-
ids, which are then further degraded into simpler organic com-
pounds biominerals (Warinner et al., 2022, Demarchi, 2020).
Conclusion

Based on all the scientific evidence available to date, and

through a brief review of the related literature and expert opinions,
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it is clear that the study of organic residues in historical and geo-
logical artifacts holds an unparalleled place in reconstructing the
past and deepening our understanding of various ancient periods
and natural history. In the fields of archaeology, archacometry,

and geology, such studies provide powerful tools that allow us to

travel deep into history—even millions of years back—and access
a vast repository of meticulously analyzed data that spans environ-
mental conservation, human health, and the wellbeing of other
living organisms. By studying and applying the data derived from
these ancient remains, we can reconstruct environmental condi-
tions, evolutionary processes, and extinct ecosystems, offering a
more comprehensive and accurate view of Earth’s history and the

development of both natural and human landscapes.
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